### **PRODUCT SUBMITTAL / SUBSTITUTION REQUEST**

| TO:                              |                                    |                                |                                                              |
|----------------------------------|------------------------------------|--------------------------------|--------------------------------------------------------------|
| PROJECT:                         |                                    |                                |                                                              |
| SPECIFIED ITEM:                  |                                    |                                |                                                              |
|                                  |                                    |                                |                                                              |
| Section                          | Page                               | Paragraph                      | Description                                                  |
| PRODUCT SU                       | BMITTAL / SUBSTITUTIO              | N REQUESTED:                   |                                                              |
|                                  |                                    |                                |                                                              |
|                                  |                                    |                                |                                                              |
|                                  |                                    |                                |                                                              |
| The attached subrof the request. | mittal package includes the produ  | ict description, specification | ns, drawings, and performance data for use in the evaluation |
| SUBMITTED E                      | <u>کې</u>                          |                                |                                                              |
| Name:                            |                                    |                                | Signature:                                                   |
| Company:                         |                                    |                                |                                                              |
| Address:                         |                                    |                                |                                                              |
| Date:                            | Telephone:                         |                                | Fax:                                                         |
| FOR USE BY <sup>-</sup>          | THE ARCHITECT AND/OR               | ENGINEER                       |                                                              |
| Approved                         | Approved as Noted                  | Not Approved                   |                                                              |
| (If not approved, µ              | please briefly explain why the pro | duct was not accepted.)        |                                                              |
|                                  |                                    |                                |                                                              |
| By:                              | Date:                              |                                |                                                              |
| Remarks:                         |                                    |                                |                                                              |
|                                  |                                    |                                |                                                              |
|                                  |                                    |                                |                                                              |
|                                  |                                    |                                |                                                              |

#### Smart DI+



#### **SECTION CONTENTS** Page No.

General Information ...... 1 Material Specifications ...... 1 Installation Specifications ...... 1 Performance Data ...... 3 Design Criteria ...... 3 Ordering Information ...... 6



Smart DI+

#### **THREAD VERSION**

UNC Coarse Thread

#### **ANCHOR MATERIALS**

**Zinc Plated Carbon Steel** 

#### **ROD/ANCHOR SIZE RANGE (TYP.)**

1/4" to 3/4" diameter UNC Coarse Thread

#### SUITABLE BASE MATERIALS

Normal-weight Concrete

#### **STANDARD DROP-IN**



**SMART DI+ DROP-IN** 

• Easier to Set

Anchor prior

to installation

- More Expansion
- Expansion Indicator

When properly

set, anchor indicator will leave blue paint in reccessed cavities

A4

designed to be easier to fully set during installation as a benefit to the user.

Smart DI+ Internally Threaded Expansion Anchor

#### **GENERAL APPLICATIONS AND USES**

- Suspending Conduit
- Fire Sprinkler
- Cable Trays and Strut • Pipe Supports
- Concrete Formwork
- Suspended Lighting

#### FEATURES AND BENEFITS

- + Installs with reduced effort compared to traditional drop in style anchors.
- + Can be installed using the Powers manual setting tool or Powers Smart DI+ System with a hammer-drill
- + Setting indicater makes identification of properly set anchors easy (when installed using the Smart Tool and Smart Bit).
- + Internally threaded anchor for easy bolt removability and service work

#### TESTING, APPROVALS AND LISTINGS

FM Global (Factory Mutual) - Report No. 3040746 (see ordering information) Underwriters Laboratory (UL Listed) – File No. EX1289 (N) (see ordering information)

#### **GUIDE SPECIFICATIONS**

CSI Divisions: 03151-Concrete Anchoring and 05090-Metal Fastenings. Dropin anchors shall be Smart DI+ as supplied by Powers Fasteners, Inc., Brewster, NY.

#### **MATERIAL SPECIFICATIONS**

| Anchor Component | Carbon Steel                         |
|------------------|--------------------------------------|
| Anchor Body      | AISI 1008                            |
| Plug             | AISI 1008                            |
| Zinc Plating     | ASTM B633,SC1,<br>Type III (Fe/Zn 5) |

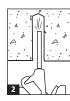
#### **INSTALLATION SPECIFICATIONS**

|                                                               | Rod/Anchor Diameter |        |        |        |        |  |  |
|---------------------------------------------------------------|---------------------|--------|--------|--------|--------|--|--|
| Anchor (Rod) Size                                             | 1/4"                | 3/8"   | 1/2"   | 5/8"   | 3/4"   |  |  |
| Nominal Outside Diameter d (in.)                              | 0.375               | 0.500  | 0.625  | 0.875  | 1.000  |  |  |
| ANSI Drill Bit Size, d <sub>bit</sub> (in.)                   | 3/8                 | 1/2    | 5/8    | 7/8    | 1      |  |  |
| Maximum Tightening<br>Torque, <i>T<sub>max</sub></i> (ftlbs.) | 5                   | 10     | 20     | 40     | 80     |  |  |
| Thread Size (UNC)                                             | 1/4-20              | 3/8-16 | 1/2-13 | 5/8-11 | 3/4-10 |  |  |
| Thread Depth (in.)                                            | 7/16                | 5/8    | 13/16  | 1 3/16 | 1 3/8  |  |  |
| Anchor Length <i>I</i> , $h_v$ (in.)                          | 1                   | 1 9/16 | 2      | 2 1/2  | 3 3/16 |  |  |

d dhi

#### Nomenclature

- d = Diameter of anchor
- $d_{bit}$  = Diameter of drill bit
- = Base material thickness. h
  - The minimum value of h should be  $1.5 h_v$  or 3" min. (whichever is greater)
- $h_v$  = Minimum embedment depth
- = Overall length of anchor 1
- $T_{max} =$  Maximum tightening torque


### FASTENERS

#### **INSTALLATION SPECIFICATIONS (Continued)**


#### **Manual Installation**



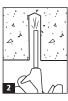
1. Drill a hole into the base material to the depth of embedment required. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15. Use any ANSI Standard carbide drill bit.



2. Blow the hole clean of dust and other materials. Insert the anchor into the hole and, if necessary tap flush with surface.



3. Using a Powers manual setting tool specifically, set the anchor by driving the tool with a sufficient number of hammer blows until the shoulder of the tool is seated against the anchor. Anchor will not hold allowable loads required if shoulder of Powers manual setting tool does not seat against anchor.




4. If using a fixture, position it, insert bolt and tighten so as not to exceed the maximum tighting torque. Most overhead applications utilize threaded rod. Minimum thread engagement should be at least one anchor diameter.

#### **Smart Installation**



1. Drill a hole into the base material to the depth of embedment required using the appropriate Powers Smart Bit. The tolerances of the drill bit used must meet the requirements of ANSI Standard B212.15. Standard installation with a Smart Bit may result in the anchor being slightly subset from the surface. Minimum published embedment depths must be achieved by using the shoulder of the Smart Bit as a quide.



2. Blow the hole clean of dust and other materials. Insert the anchor into the hole and, if necessary, tap flush with the surface.



3. Slide the appropriate Powers Smart Tool over the Smart Bit used to drill the hole and twist counterclockwise to lock the setting tool onto the bit.



4. Once attached, insert the tip of the setting tool into the Smart DI+ anchor and drive the internal plug fully using the rotation with hammer mode of the SDS+ drill (see table below for suggested tools).



5. For proper installation, the shoulder of the setting tool must come briefly in full contact with the Smart DI+ resulting in the blue indicator paint being removed from the raised top of the anchor. The paint will remain in the recessed portion of the top indicating full expansion.



6. If using a fixture, position it, insert the bolt and tighten so as not to exceed the maximum tightening torque. Most overhead applications utilize threaded rod. Minimum thread engagement should be at least one anchor diameter.

#### Recommended SDS+ Rotary Hammer Drill Specification (for Smart DI+ with Smart Installation)

| Diameter   | Concrete Strength (psi) | Rated Tool Impact Energy Suggested Range* (ft-lbs) | Recommended Rotary Hammer Tool<br>Part Number |  |  |
|------------|-------------------------|----------------------------------------------------|-----------------------------------------------|--|--|
| 1/4" 2,500 |                         | 1.3 - 2.6                                          | DH24PF3                                       |  |  |
| 1/4        | 6,500                   | 1.3 - 2.6                                          | Unz4rr5                                       |  |  |
| 3/8″       | 2,500                   | 1.3 - 4.0                                          | DH24PF3                                       |  |  |
| 5/0        | 6,500                   | 2.1 - 4.0                                          | Dnz4rr5                                       |  |  |
| 1/2″       | 2,500                   | 2.0 - 4.0                                          | DH24PF3                                       |  |  |
| 1/2        | 6,500                   | 2.5 - 4.0                                          | DH28PC                                        |  |  |

\* Local concrete conditions and rotary hammer impact efficiency vary greatly. Please verify that the tool impact energy is sufficient to fully set the internal plug of the Smart DI+ prior to using the system.

A4

#### **PRODUCT INFORMATION**

#### Smart DI+

# MECHA

#### PERFORMANCE DATA

#### Ultimate Load Capacities for Smart DI+ in Normal-Weight Concrete<sup>1,2</sup>

| Nominal            | Minimum      |                   | Minimum Concrete Compressive Strength - f'c (psi) |                   |                 |                   |                 |                   |                 |                   |                 |  |  |
|--------------------|--------------|-------------------|---------------------------------------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|--|--|
| Anchor<br>Diameter | 2,5          | 500               | 3,0                                               | 000               | 4,0             | 000               | 6,0             | 00                | 8,0             | 00                |                 |  |  |
| d<br>in.           | Depth<br>in. | Tension<br>(lbs.) | Shear<br>(lbs.)                                   | Tension<br>(lbs.) | Shear<br>(lbs.) | Tension<br>(lbs.) | Shear<br>(lbs.) | Tension<br>(lbs.) | Shear<br>(lbs.) | Tension<br>(lbs.) | Shear<br>(lbs.) |  |  |
| 1/4                | 1            | 1,300             | 2,495                                             | 1,390             | 2,510           | 1,565             | 2,550           | 1,910             | 2,620           | 2,260             | 2,690           |  |  |
| 3/8                | 1 9/16       | 1,985             | 4,160                                             | 2,275             | 4,360           | 2,850             | 4,755           | 4,000             | 5,550           | 5,150             | 6,345           |  |  |
| 1/2                | 2            | 4,235             | 7,170                                             | 4,350             | 7,280           | 4,580             | 7,505           | 5,035             | 7,955           | 5,490             | 8,405           |  |  |
| 5/8                | 2 1/2        | 6,945             | 9,850                                             | 7,330             | 10,805          | 8,095             | 12,710          | 9,630             | 16,525          | 11,165            | 20,340          |  |  |
| 3/4                | 3 3/16       | 7,610             | 16,110                                            | 8,535             | 16,730          | 10,380            | 17,975          | 14,080            | 20,460          | 17,780            | 22,945          |  |  |

1. Tabulated load values are for anchors installed in concrete. Concrete compressive strength must be at the specified minimum at the time of installation. 2. Ultimate load capacities must be reduced by a minimum safety factor of 4.0 or greater to determine allowable working load.

#### Allowable Load Capacities for Smart DI+ in Normal-Weight Concrete<sup>1,2,3</sup>

| Nominal            | Minimum      | Minimum Concrete Compressive Strength - f'c (psi) |                 |                   |                 |                   |                 |                   |                 |                   |                 |  |
|--------------------|--------------|---------------------------------------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|--|
| Anchor<br>Diameter | 2,500        |                                                   | 3,000           |                   | 4,000           |                   | 6,000           |                   | 8,000           |                   |                 |  |
| d<br>in.           | Depth<br>in. | Tension<br>(lbs.)                                 | Shear<br>(lbs.) | Tension<br>(lbs.) | Shear<br>(lbs.) | Tension<br>(lbs.) | Shear<br>(lbs.) | Tension<br>(lbs.) | Shear<br>(lbs.) | Tension<br>(lbs.) | Shear<br>(lbs.) |  |
| 1/4                | 1            | 325                                               | 623             | 347               | 627             | 391               | 637             | 477               | 655             | 565               | 672             |  |
| 3/8                | 1 9/16       | 496                                               | 1,040           | 568               | 1,090           | 712               | 1,188           | 1,000             | 1,387           | 1,287             | 1,586           |  |
| 1/2                | 2            | 1,058                                             | 1,792           | 1,087             | 1,820           | 1,145             | 1,876           | 1,258             | 1,988           | 1,372             | 2,101           |  |
| 5/8                | 2 1/2        | 1,736                                             | 2,462           | 1,832             | 2,701           | 2,023             | 3,177           | 2,407             | 4,131           | 2,791             | 5,085           |  |
| 3/4                | 3 3/16       | 1,902                                             | 4,027           | 2,133             | 4,182           | 2,595             | 4,493           | 3,520             | 5,115           | 4,445             | 5,736           |  |

1. Allowable load capacities listed are calculated using and applied safety factor of 4.0.

2. Linear interpolation may be used to determine allowable loads for intermediate compressive strengths.

3. Allowable load capacities are multiplied by reduction factors found in the Design Criteria section when anchor spacing or edge distances are less than critical distances.

#### **DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)**

#### **Combined Loading**

For anchors loaded in both shear and tension, the combination of loads should be proportioned as follows:

$$\left(\frac{N_u}{N_n}\right)^{\frac{5}{3}} + \left(\frac{V_u}{V_n}\right)^{\frac{5}{3}} \le 1$$
 or  $\left(\frac{N_u}{N_n}\right) + \left(\frac{V_u}{V_n}\right) \le 1$ 

Where:  $N_{\mu}$  = Applied Service Tension Load

- $N_n$  = Allowable Tension Load
- $V_u$  = Applied Service Shear Load
- $V_n$  = Allowable Shear Load

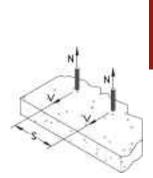
NOTE: Allowable load values found in the performance data tables are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances. Linear interpolation is allowed for intermediate anchor spacing and edge distances between critical and minimum distances. When an anchor is affected by both reduced spacing and edge distance, the spacing and edge reduction factors must be combined (multiplied). Multiple reduction factors for anchor spacing and edge distance may be required depending on the anchor group configuration.

Powers USA: (800) 524-3244 or (914) 235-6300



#### **PRODUCT INFORMATION**

#### Smart DI+


NICAL

#### DESIGN CRITERIA (ALLOWABLE STRESS DESIGN)

#### Load Adjustment Factors for Normal-Weight Concrete

|                           |                 | Spacir | ng Distance - T | ension |       |        |
|---------------------------|-----------------|--------|-----------------|--------|-------|--------|
| Dia                       | ı. (in)         | 1/4"   | 3/8"            | 1/2"   | 5/8"  | 3/4"   |
| ł                         | <sup>1</sup> ef | 1      | 1 9/16          | 2      | 2 1/2 | 3 3/16 |
|                           | <sup>5</sup> cr | 3      | 4 1/2           | 6      | 7 1/2 | 9 1/2  |
| SI                        | min             | 1 1/2  | 2 3/8           | 3      | 3 3/4 | 4 3/4  |
|                           | 1/2             |        |                 |        |       |        |
|                           | 1               |        |                 |        |       |        |
|                           | 1 1/2           | 0.90   |                 |        |       |        |
|                           | 2               | 0.94   |                 |        |       |        |
|                           | 2 1/2           | 0.97   | 0.84            |        |       |        |
| es)                       | 3               | 1.00   | 0.87            | 0.85   |       |        |
| Spacing Distance (inches) | 3 1/2           |        | 0.91            | 0.88   |       |        |
| (ir                       | 4               |        | 0.95            | 0.90   | 0.80  |        |
| JCe                       | 4 1/2           |        | 1.00            | 0.93   | 0.83  |        |
| star                      | 5               |        |                 | 0.95   | 0.86  | 0.80   |
| Dis                       | 5 1/2           |        |                 | 0.98   | 0.89  | 0.82   |
| bu                        | 6               |        |                 | 1.00   | 0.91  | 0.84   |
| aci                       | 6 1/2           |        |                 |        | 0.94  | 0.87   |
| Sp                        | 7               |        |                 |        | 0.97  | 0.89   |
|                           | 7 1/2           |        |                 |        | 1.00  | 0.91   |
|                           | 8               |        |                 |        |       | 0.93   |
|                           | 8 1/2           |        |                 |        |       | 0.96   |
|                           | 9               |        |                 |        |       | 0.98   |
|                           | 9 1/2           |        |                 |        |       | 1.00   |

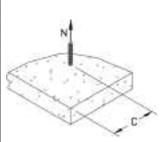
| 4     |           | 0.95          | 0.90       | 0.80  |        |
|-------|-----------|---------------|------------|-------|--------|
| 4 1/2 |           | 1.00          | 0.93       | 0.83  |        |
| 5     |           |               | 0.95       | 0.86  | 0.80   |
| 5 1/2 |           |               | 0.98       | 0.89  | 0.82   |
| 6     |           |               | 1.00       | 0.91  | 0.84   |
| 6 1/2 |           |               |            | 0.94  | 0.87   |
| 7     |           |               |            | 0.97  | 0.89   |
| 7 1/2 |           |               |            | 1.00  | 0.91   |
| 8     |           |               |            |       | 0.93   |
| 8 1/2 |           |               |            |       | 0.96   |
| 9     |           |               |            |       | 0.98   |
| 9 1/2 |           |               |            |       | 1.00   |
|       |           |               |            |       |        |
|       | Spacing R | eduction Fact | ors -Shear |       |        |
| (in)  | 1/4"      | 3/8"          | 1/2"       | 5/8"  | 3/4"   |
| ef    | 1         | 1 9/16        | 2          | 2 1/2 | 3 3/16 |
| r     | 3         | 5             | 6          | 7 1/2 | 9 1/2  |
| in    | 1 1/2     | 2 3/8         | 3          | 3 3/4 | 4 3/4  |
| 1/2   |           |               |            |       |        |
| 1     |           |               |            |       |        |
| 1 1/2 | 0.62      |               |            |       |        |
|       | 1         |               | 1          |       |        |



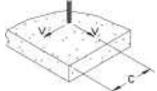
|                           |                 | Spacing R | eduction Fact | ors -Shear |       |        |
|---------------------------|-----------------|-----------|---------------|------------|-------|--------|
| Di                        | a. (in)         | 1/4"      | 3/8"          | 1/2"       | 5/8"  | 3/4"   |
|                           | h <sub>ef</sub> | 1         | 1 9/16        | 2          | 2 1/2 | 3 3/16 |
|                           | s <sub>Cr</sub> | 3         | 5             | 6          | 7 1/2 | 9 1/2  |
| S                         | min             | 1 1/2     | 2 3/8         | 3          | 3 3/4 | 4 3/4  |
|                           | 1/2             |           |               |            |       |        |
|                           | 1               |           |               |            |       |        |
|                           | 1 1/2           | 0.62      |               |            |       |        |
|                           | 2               | 0.75      |               |            |       |        |
|                           | 2 1/2           | 0.88      | 0.65          |            |       |        |
| (SS                       | 3               | 1.00      | 0.73          | 0.62       |       |        |
| che                       | 3 1/2           |           | 0.81          | 0.69       |       |        |
| (in                       | 4               |           | 0.89          | 0.75       | 0.60  |        |
| JCe                       | 4 1/2           |           | 0.97          | 0.81       | 0.66  |        |
| Spacing Distance (inches) | 5               |           | 1.00          | 0.88       | 0.71  | 0.60   |
| Di                        | 5 1/2           |           |               | 0.94       | 0.77  | 0.64   |
| ing                       | 6               |           |               | 1.00       | 0.83  | 0.69   |
| oac                       | 6 1/2           |           |               |            | 0.89  | 0.73   |
| S                         | 7               |           |               |            | 0.94  | 0.78   |
|                           | 7 1/2           |           |               |            | 1.00  | 0.82   |
|                           | 8               |           |               |            |       | 0.87   |
|                           | 8 1/2           |           |               |            |       | 0.91   |
|                           | 9               |           |               |            |       | 0.96   |
|                           | 9 1/2           |           |               |            |       | 1.00   |

#### Smart DI+

#### **PRODUCT INFORMATION**




# ANCHORS


#### DESIGN CRITERIA (ALLOWABLE STRESS DESIGN) CONTINUED

#### Load Adjustment Factors for Normal-Weight Concrete

|                        |                 | Edge | e Distance - Tei | nsion |       |        |
|------------------------|-----------------|------|------------------|-------|-------|--------|
| Dia                    | a. (in)         | 1/4" | 3/8"             | 1/2"  | 5/8"  | 3/4"   |
| ł                      | <sup>h</sup> ef | 1    | 1 9/16           | 2     | 2 1/2 | 3 3/16 |
|                        | c <sub>cr</sub> | 2    | 4 11/16          | 6     | 7 1/2 | 9 9/16 |
| C                      | min             | 2    | 3 1/8            | 4     | 5     | 6 3/8  |
|                        | 1/2             |      |                  |       |       |        |
|                        | 1               |      |                  |       |       |        |
|                        | 1 1/2           |      |                  |       |       |        |
|                        | 2               | 1.00 |                  |       |       |        |
|                        | 2 1/2           |      |                  |       |       |        |
|                        | 3               |      |                  |       |       |        |
| Edge Distance (inches) | 3 1/2           |      | 0.98             |       |       |        |
| incl                   | 4               |      | 0.99             | 0.93  |       |        |
| , e                    | 4 1/2           |      | 0.00             | 0.95  |       |        |
| anc                    | 5               |      |                  | 0.97  | 0.85  |        |
| Dist                   | 5 1/2           |      |                  | 0.98  | 0.88  |        |
| je [                   | 6               |      |                  | 1.00  | 0.91  |        |
| Edo                    | 6 1/2           |      |                  |       | 0.94  | 0.85   |
|                        | 7               |      |                  |       | 0.97  | 0.88   |
|                        | 7 1/2           |      |                  |       | 1.00  | 0.90   |
|                        | 8               |      |                  |       |       | 0.93   |
|                        | 8 1/2           |      |                  |       |       | 0.95   |
|                        | 9               |      |                  |       |       | 0.98   |
|                        | 9 1/2           |      |                  |       |       | 1.00   |



|                        |                 | Edge Re | eduction Factor | rs -Shear |       |        |
|------------------------|-----------------|---------|-----------------|-----------|-------|--------|
| Di                     | a. (in)         | 1/4"    | 3/8"            | 1/2"      | 5/8"  | 3/4"   |
|                        | h <sub>ef</sub> | 1       | 1 9/16          | 2         | 2 1/2 | 3 3/16 |
|                        | c <sub>cr</sub> | 3       | 4 11/16         | 6         | 7 1/2 | 9 9/16 |
| (                      | min             | 2       | 3 1/8           | 4         | 5     | 6 3/8  |
|                        | 1/2             |         |                 |           |       |        |
|                        | 1               |         |                 |           |       |        |
|                        | 1 1/2           |         |                 |           |       |        |
|                        | 2               | 0.87    |                 |           |       |        |
|                        | 2 1/2           | 0.94    |                 |           |       |        |
|                        | 3               | 1.00    |                 |           |       |        |
| Edge Distance (inches) | 3 1/2           |         | 0.96            |           |       |        |
| inc                    | 4               |         | 0.98            | 0.91      |       |        |
| ) e                    | 4 1/2           |         | 1.00            | 0.93      |       |        |
| ano                    | 5               |         |                 | 0.95      | 0.85  |        |
| Dist                   | 5 1/2           |         |                 | 0.98      | 0.88  |        |
| Je [                   | 6               |         |                 | 1.00      | 0.91  |        |
| Edç                    | 6 1/2           |         |                 |           | 0.94  | 0.85   |
|                        | 7               |         |                 |           | 0.97  | 0.88   |
|                        | 7 1/2           |         |                 |           | 1.00  | 0.90   |
|                        | 8               |         |                 |           |       | 0.93   |
|                        | 8 1/2           |         |                 |           |       | 0.95   |
|                        | 9               |         |                 |           |       | 0.98   |
|                        | 9 1/2           |         |                 |           |       | 1.00   |



A4

#### Smart DI+

#### ORDERING INFORMATION

#### Smart DI+ Carbon Steel Smooth Wall Dropin

| r        |                 |                | -            |          |             |         |          |
|----------|-----------------|----------------|--------------|----------|-------------|---------|----------|
| Cat. No. | Rod/Anchor Size | Overall Length | Thread Depth | Std. Box | Std. Carton | Wt./100 | FM or UL |
| 6304SD   | 1/4"            | 1"             | 7/16"        | 100      | 1,000       | 2       | -        |
| 6306SD   | 3/8"            | 1 9/16"        | 5/8"         | 50       | 500         | 6       | FM/UL    |
| 6308SD   | 1/2"            | 2"             | 13/16"       | 50       | 250         | 12      | FM/UL    |
| 6320SD   | 5/8"            | 2 1/2"         | 1 1/8"       | 25       | 125         | 32      | FM       |
| 6312SD   | 3/4"            | 3 3/16"        | 1 3/16"      | 10       | 50          | 48      | FM       |

#### Smart Tool

| Cat. No.        | 00425SD | 00427SD | 00429SD |  |
|-----------------|---------|---------|---------|--|
| Rod/Anchor Size | 1/4"    | 3/8"    | 1/2"    |  |
| Pin Length      | 39/64"  | 61/64"  | 1 3/16" |  |

#### Smart Bit

| Cat. No.     | 00391SD               | 00397SD               | 00410SD               |  |
|--------------|-----------------------|-----------------------|-----------------------|--|
| Description  | Smart Bit<br>for 1/4" | Smart Bit<br>for 3/8" | Smart Bit<br>for 1/2" |  |
| Bit Diameter | 3/8″                  | 1/2″                  | 5/8″                  |  |

#### Manual Setting Tools for Smart DI+

| Cat. No.        | 6305   | 6307   | 6309    | 6311    | 6313     |
|-----------------|--------|--------|---------|---------|----------|
| Rod/Anchor Size | 1/4"   | 3/8"   | 1/2 "   | 5/8″    | 3/4″     |
| Pin Length      | 39/64" | 61/64" | 1 3/16" | 1 5/16" | 1 61/64" |

#### **Recommended Rotary Hammer Drills**

| Powers Cat. No. | Description                                                                         |  |
|-----------------|-------------------------------------------------------------------------------------|--|
| DH24PF3         | Hitachi DH24PF3, 15/16" SDS Plus Rotary Hammer, 3-Mode (D-Handle)                   |  |
| DH25DAL         | Hitachi DH24DAL, 25.2V Lithium Ion SDS Plus Rotary Hammer (3.0Ah)                   |  |
| DH28PC          | Hitachi DH28PC, 720W SDS Plus Rotary Hammer(110 Volt)<br>For High Strength Concrete |  |



