PRODUCT SUBMITTAL / SUBSTITUTION REQUEST

10:			
PROJECT:			
SPECIFIED ITEM:			
Section	Page	Paragraph	Description
PRODUCT SUB	MITTAL / SUBSTITUTIO	N REQUESTED:	
	ittal package includes the prod	uct description, specifications,	drawings, and performance data for use in the evaluation
of the request.			
SUBMITTED BY	' :		
Name:			Signature:
Company:			
Address:			
Date:	Telephone:		Fax:
FOR USE BY TH	HE ARCHITECT AND/OF	RENGINEER	
Approved	Approved as Noted	Not Approved	
(If not approved, ple	ease briefly explain why the pro	oduct was not accepted.)	
By:	Date:		
Remarks:			

Power-Stud+™ SD1 Wedge Expansion Anchor

PRODUCT DESCRIPTION

The Power-Stud+ SD1 anchor is a fully threaded, torque-controlled, wedge expansion anchor which is designed for consistent performance in cracked and uncracked concrete. Suitable base materials include normal-weight concrete, structural sand-lightweight concrete and concrete over steel deck. The anchor is manufactured with a zinc plated carbon steel body and expansion clip. Nut and washer are included.

GENERAL APPLICATIONS AND USES

- Structural connections, i.e., beam and column anchorage
- Safety-related attachments
- Interior applications / low level corrosion environment
- Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers
- Seismic and wind loading

FEATURES AND BENEFITS

- + Consistent performance in high and low strength concrete
- + Nominal drill bit size is the same as the anchor diameter
- + Anchor can be installed through standard fixture holes
- + Length ID code and identifying marking stamped on head of each anchor
- + Anchor design allows for follow-up expansion after setting under tensile loading

APPROVALS AND LISTINGS

International Code Council, Evaluation Service (ICC-ES), ESR-2818 for concrete

Code compliant with the 2009 IBC, 2009 IRC, 2006 IBC, 2006 IRC, 2003 IBC, 2003 IRC and 1997 UBC International Code Council, Evaluation Service (ICC-ES), ESR-2966 for masonry Code compliant with the 2006 IBC, 2006 IRC, 2003 IBC, 2003 IRC, 2000 IBC, and 1997 UBC

Tested in accordance with ACI 355.2 and ICC-ES AC193 for use in structural concrete under the design provisions of ACI 318 (Strength Design method using Appendix D)

Evaluated and qualified by an accredited independent testing laboratory for recognition in cracked and uncracked concrete including seismic and wind loading (Category 1 anchors)

FM Global (Factory Mutual) - File No. 3033795, 3/8" and 1/2" diameters Pipe hanger components for automatic sprinkler systems

Underwriters Laboratories (UL Listed) - File No. EX1289. See listing for sizes.

GUIDE SPECIFICATIONS

CSI Divisions: 03151-Concrete Anchoring, 04081-Masonry Anchorage and 05090-Metal Fastenings. Expansion anchors shall be Power-Stud+ SD1 as supplied by Powers Fasteners, Inc., Brewster, NY. Anchors shall be installed in accordance with published instructions and the Authority Having Jurisdiction.

MATERIAL SPECIFICATIONS

Anchor component	Specification
Anchor body	Medium carbon steel
Hex nut	Carbon steel, ASTM A 563, Grade A
Washer	Carbon steel, ASTM F 844; meets dimensional requirements of ANSI B18.22.2, Type A plain
Expansion wedge (clip)	Carbon steel
Plating	Zinc plating according to ASTM B 633, SC1, Type III (Fe/Zn 5) Minimum plating requirement for Mild Service Condition

SECTION CONTENTS	Page No.
General Information	1
Material Specifications	1
nstallation Specifications	2
nstallation Instructions	3
SD Performance Data	4
Reference Performance D	ata 5
ASD Performance Data	6
Strength Design Infomati	on 10
Ordering Information	12

Power-Stud+ SD1 Assembly

THREAD VERSION

UNC threaded stud

ANCHOR MATERIALS

Zinc plated carbon steel body and expansion clip, nut and washer

ANCHOR SIZE RANGE (TYP.)

1/4" diameter (uncracked concrete only) 3/8" diameter through 1-1/4" diameter

SUITABLE BASE MATERIALS

Normal-weight concrete Structural sand-lightweight concrete Concrete over steel deck Grouted concrete masonry (CMU)

INSTALLATION SPECIFICATIONS

Installation Table for Power-Stud+ SD1^{1,2,3}

Anchor Property/Setting	Notation	Units				N	ominal Ar	nchor Diai	neter			
Information	NOtation	UIIIIS	1/4	3/8	1.	/2	5	/8	3/4	7/8	1	1-1/4
Anchor diameter	d _O	in. (mm)	0.25 (6.4)	0.375 (9.5)		500 2.7)		525 5.9)	0.75 (19.1)	0.875 (22.2)	1 (25.4)	1.25 (31.8)
Minimum diameter of hole clearance in fixture	d _h	in. (mm)	5/16 (7.5)	7/16 (11.1)		16 1.3)		/16 7.5)	13/16 (20.6)	15/16 (23.8)	1-1/8 (28.6)	1-3/8 (34.9)
Nominal drill bit diameter	d _{bit}	in. (mm)	1/4" ANSI	3/8" ANSI	1/ Af	2" NSI		8" VSI	3/4" ANSI	7/8" ANSI	1" ANSI	1-1/4" ANSI
Minimum nominal embedment depth	h _{nom}	in. (mm)	1-3/4 (44)	2-3/8 (60)	2-1/2 (64)	3-3/4 (95)	3-3/8 (86)	4-5/8 (117)	4 (102)	4-1/2 (114)	5-1/2 (140)	6-1/2 (165)
Effective embedment	h _{ef}	in. (mm)	1.5 (38)	2 (51)	2 (51)	3.25 (83)	2.75 (70)	4 (102)	3.125 (79)	3.5 (89)	4.375 (111)	5.375 (137)
Minimum hole depth ²	h _O	in. (mm)	2 (51)	2-5/8 (67)	2-3/4 (70)	4 (102)	3-3/4 (95)	5 (127)	4-1/4 (108)	4-13/16 (122)	4-7/8 (124)	7-1/4 (184)
Minimum member thickness ²	h _{min}	in. (mm)	4 (102)	4 (102)	5 (127)	6 (152)	6 (152)	7 (178)	6 (152)	10 (254)	10 (254)	12 (305)
Minimum overall anchor length	$\ell_{\it anch}$	in. (mm)	2-1/4 (57)	3 (76)	3-3/4 (95)	5-1/2 (140)	4-1/2 (114)	6 (152)	5-1/2 (140)	6 (152)	9 (229)	9 (229)
Minimum edge distance ²	c _{min}	in. (mm)	1-3/4 (44)	2-1/4 (57)	5-1/4 (133)	4 (102)	5-1/2 (140)	4-1/4 (108)	5 (127)	7 (178)	8 (203)	8 (203)
Minimum spacing distance ²	^S min	in. (mm)	2-1/4 (57)	3-3/4 (95)	7-1/4 (184)	5 (127)	11 (279)	4-1/4 (108)	6 (152)	6-1/2 (165)	8 (203)	8 (203)
Critical edge distance ²	c _{ac}	in. (mm)	3-1/2 (89)	6-1/2 (165)	8-1/2 (216)	8 (203)	6 (152)	10 (254)	11 (279)	12 (305)	12 (305)	15 (381)
Installation torque ³	T _{inst}	ftlbf. (N-m)	4 (5)	20 (27)	1	.0 .4)		80 (108)		175 (237)	225 (305)	375 (508)
Torque wrench/socket size	-	in.	7/16	9/16	3	/4	15	/16	1-1/8	1-5/16	1-1/2	1-7/8
Nut height	-	ln.	7/32	21/64	7/	16	35	/64	41/64	3/4	55/64	1-1/16

PRODUCT INFORMATION

For SI: 1 inch = 25.4 mm, 1 ft-lbf = 1.356 N-m.

Power-Stud+ SD1 Anchor Detail

Head Marking

Legend

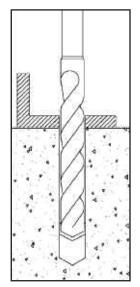
Letter Code = Length Identification Mark
'+' Symbol = Strength Design Compliant Anchor
(see ordering information)

Number Code = Carbon Steel Body and Expansion Clip (not on 1/4" diameter anchors)

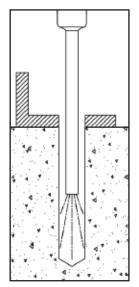
Length Identification

Mark	Α	В	С	D	Е	F					
From	1-1/2"	2"	2-1/2"	3″	3-1/2"	4"					
Up to but not including	2"	2-1/2"	3″	3-1/2"	4"	4-1/2"					
Mark	G	Н	I	J	K	L					
From	4-1/2"	5″	5-1/2"	6"	6-1/2"	7"					
Up to but not including	5″	5-1/2"	6"	6-1/2"	7″	7-1/2"					
Mark	М	N	0	Р	Q	R	S	T			
From	7-1/2"	8"	8-1/2"	9"	9-1/2"	10"	11"	12"			
Up to but not including	8"	8-1/2"	9"	9-1/2"	10"	11"	12"	13"			
ength identification mark indicates overall length of anchor.											

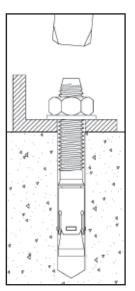
^{1.} The information presented in this table is to be used in conjunction with the design criteria of ACI 318 Appendix D.

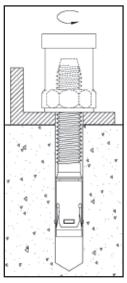

^{2.} For installations through the soffit of steel into concrete, see the installation detail. Anchors in the lower flute may be installed with a maximum 1-inch offset in either direction from the center of the flute. In addition, anchors must have an axial spacing along the flute equal to the greater of $3h_{ef}$ or 1.5 times the flute width.

^{3.} For installation of 5/8-inch diameter anchor through the soffit of the steel deck into structural sand-lightweight concrete, installation torque is 50 ft.-lbf. For installation of 3/4-inch diameter anchor through the soffit of the steel deck into structural sand-lightweight concrete, installation torque is 80 ft.-lbf.



INSTALLATION INSTRUCTIONS


Installation Instructions for Power-Stud+™ SD1


1.) Using the proper drill bit size, drill a hole into the base material to the required depth. The tolerances of the drill bit used should meet the requirements of ANSI Standard B212.15.

2.) Remove dust and debris from the hole using a hand pump, compressed air or a vacuum.



3.) Position the washer on the anchor and thread on the nut. If installing through a fixture, drive the anchor through the fixture into the hole. Be sure the anchor is driven to the minimum required embedment depth, h_{nom}.

4.) Tighten the anchor with a torque wrench by applying the required installation torque, T_{inst}.

Installation Detail Power-Stud+ SD1 Installed Through Soffit of Steel Deck into Concrete

STRENGTH DESIGN PERFORMANCE DATA

Factored design strength $\phi N_{\rm n}$ and $\phi V_{\rm n}$ Calculated in accordance with ACI 318 Appendix D Compliant with the International Building Code

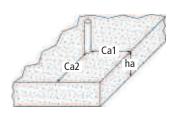
Tension and Shear Design Strengths for Power-Stud+ SD1 in Cracked Concrete 1.6

Nominal	Nominal			Mi	nimum Cor	crete Comp	ressive Str	ength, <i>f'c</i> (p	osi)		
Anchor	Embed.	2,500		3,000		4,000		6,000		8,0	00
Diameter (in.)	h _{nom} (in.)	N _n Tension (lbs.)	V _n Shear (lbs.)	N _n Tension (lbs.)	<i>V_n</i> Shear (lbs.)						
1/4	1-3/4	-	-	-	-	-	-	-	-	-	-
3/8	2-3/8	1,325	1,380	1,450	1,380	1,675	1,380	2,050	1,380	2,365	1,380
1/2	2-1/4	1,565	1,685	1,710	1,845	1,975	2,130	2,420	2,290	2,795	2,290
1/2	3-3/4	1,630	2,290	1,785	2,290	2,060	2,290	2,520	2,290	2,915	2,290
5/8	3-3/8	2,520	3,185	2,760	3,185	3,185	3,185	3,905	3,185	4,505	3,185
5/8	4-5/8	2,895	3,185	3,170	3,185	3,660	3,185	4,480	3,185	5,175	3,185
3/4	4	4,135	4,460	4530	4,460	5230	4,460	6405	4,460	7395	4,460
7/8	4-1/2	3,620	5,730	3,965	5,730	4,575	5,730	5,605	5,730	6,470	5,730
1	5-1/2	7,140	7,110	7,820	7,110	9,030	7,110	11,060	7,110	12,770	7,110
1 1/4	6-1/2	9,720	11,540	10,650	11,540	12,295	11,540	15,060	11,540	17,390	11,540

PRODUCT INFORMATION

Tension and Shear Design Strengths for Power-Stud+ SD1 in Uncracked Concrete 1.6

			esign strengths for rower staar ser in oneracted contracte									
Nominal	Nominal			Mi	nimum Cor	crete Com	oressive Str	ength, <i>f'c</i> (_l	osi)			
Anchor	Embed.	2,500		3,000		4,000		6,000		8,000		
Diameter (in.)	h _{nom} (in.)	N _n Tension (lbs.)	V _n Shear (lbs.)	N _n Tension (lbs.)	Φ V _n Shear (lbs.)	N _n Tension (lbs.)	V _n Shear (lbs.)	N _n Tension (lbs.)	V _n Shear (lbs.)	N _n Tension (lbs.)	V _n Shear (lbs.)	
1/4	1-3/4	1,435	595	1,570	595	1,765	595	1,765	595	1,765	595	
3/8	2-3/8	1,860	1,380	2,040	1,380	2,355	1,380	2,885	1,380	3,330	1,380	
1/2	2-1/4	2,095	2,290	2,295	2,290	2,645	2,290	3,240	2,290	3,745	2,290	
1/2	3-3/4	3,590	2,290	3,935	2,290	4,545	2,290	5,565	2,290	6,425	2,290	
5/8	3-3/8	3,555	3,185	3,895	3,185	4,500	3,185	5,510	3,185	6,365	3,185	
5/8	4-5/8	6,240	3,185	6,835	3,185	7,895	3,185	9,665	3,185	10,850	3,185	
3/4	4	4,310	4,460	4,720	4,460	5,450	4,460	6,675	4,460	7,710	4,460	
7/8	4-1/2	5,105	5,730	5,595	5,730	6,460	5,730	7,910	5,730	9,135	5,730	
1	5-1/2	7,140	7,110	7,820	7,110	9,030	7,110	11,060	7,110	12,770	7,110	
1 1/4	6-1/2	9,720	11,540	10,650	11,540	12,295	11,540	15,060	11,540	17,390	11,540	


Legend

Steel Strength Controls Concrete Breakout Strength Controls Anchor Pullout/Pryout Strength Controls

- 1. Tabular values are provided for illustration and are applicable for single anchors installed in normal-weight-concrete with minimum slab thickness, $h_a = h_{min}$, and with the following conditions:
 - c_{a1} is greater than or equal to the critical edge distance, c_{ac} (table values based on $c_{a1} = c_{ac}$). c_{a2} is greater than or equal to 1.5 c_{a1} .
- 2. Calculations were performed according to ACI 318-05 Appendix D. The load level corresponding to the controlling failure mode is listed. (e.g. For tension: steel, concrete breakout and pullout; For shear: steel, concrete breakout and pryout). Furthermore, the capacities for concrete breakout strength in tension and pryout strength in shear are calculated using the effective embedment values, h_{ef} , for the selected anchors as noted in the design information tables. Please also reference the installation specifications for more information.

- 4. Tabular values are permitted for static loads only, seismic loading is not considered with these tables.
- 5. For designs that include combined tension and shear, the interaction of tension and shear loads must be calculated in accordance with ACI 318 Appendix D.
- 6. Interpolation is not permitted to be used with the tabular values. For intermediate base material compressive strengths please see ACI 318 Appendix D. For other design conditions including seismic considerations please see ACI 318 Appendix D.

REFERENCE PERFORMANCE DATA

Ultimate Load Capacities for Power-Stud+ SD1 in Normal-Weight Concrete¹

Anchor	Minimum	Minimum Concrete Compressive Strength $f'_{c} = 2,500 \text{ psi } (17.3 \text{ MPa}) f'_{c} = 3,000 \text{ psi } (20.7 \text{ MPa}) f'_{c} = 4,000 \text{ psi } (27.6 \text{ MPa}) f'_{c} = 6,000 \text{ psi } (41.4 \text{ MPa})$											
Diameter	Embedment	f' _C = 2,500 p	si (17.3 MPa)	f' _C = 3,000 p	si (20.7 MPa)	f' _C = 4,000 p	si (27.6 MPa)	f' _C = 6,000 p	si (41.4 MPa)				
d in. (mm)	Depth in. (mm)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)	Tension lbs. (kN)	Shear lbs. (kN)				
1/4	1 1/8 (28)	-	-	1,435 (6.4)	1,255 (5.6)	1,660 (7.4)	1,255 (5.6)	-	-				
(6.3)	1 3/4 (44)	2,775 (12.4)	1,255 (5.6)	2,775 (12.4)	1,255 (5.6)	2,775 (12.4)	1,255 (5.6)	2,775 (12.4)	1,255 (5.6)				
3/83	1 5/8 (48)	-	-	2,685 (12)	3)	3,100 (13.8)	3)	-	-				
(9.5)	2 3/8 (60)	3,485 (15.5)	3)	3,815 (17)	3)	4,410 (19.6)	3)	5,400 (24)	3)				
	2 1/4 (57)	-	-	4,155 (18.5)	4,195 (18.7)	4,800 (21.4)	4,195 (18.7)	-	-				
1/2 (12.7)	2 1/23 (64)	3,910 (17.4)	4,195 (18.7)	4,285 (19.1)	4,195 (18.7)	4,950 (22)	4,195 (18.7)	6,060 (27)	4,195 (18.7)				
	3 3/4 (95)	7,955 (35.4)	4,195 (18.7)	8,715 (38.8)	4,195 (18.7)	10,065 (44.8)	4,195 (18.7)	12,325 (54.8)	4,195 (18.7)				
	2 3/4 (70)	-	-	5,440 (24.3)	6,815 (30.3)	6,285 (28)	6,815 (30.3)	-	-				
5/8 (15.9)	3 3/8 (86)	6,625 (29.5)	6,815 (30.3)	7,260 (32.3)	6,815 (30.3)	8,380 (37.3)	6,815 (30.3)	10,265 (45.7)	6,815 (30.3)				
	4 5/83 (117)	11,260 (50.1)	6,815 (30.3)	12,335 (54.9)	6,815 (30.3)	14,245 (63.4)	6,815 (30.3)	14,465 (64.3)	6,815 (30.3)				
3/4	3 3/8 (86)	-	-	7,860 (32.2)	12,685 (56.4)	9,075 (40.5)	12,685 (56.4)	-	-				
(19.1)	43 (102)	9,530 (42.4)	12,685 (56.4)	10,440 (46.5)	12,685 (56.4)	12,060 (53.6)	12,685 (56.4)	14,770 (65.7)	12,685 (56.4)				
7/8 (22.2)	3 1/2 (89)	11,320 (50.4)	11,690 (52.0)	12,405 (55.2)	11,690 (52.0)	15,125 (67.3)	11,690 (52.0)	19,470 (86.6)	11,690 (52.0)				
1	4 1/2 (114)	-	-	13,850 (61.8)	21,155 (94.1)	20,915 (93.4)	21,155 (94.1)	-	-				
(25.4)	5 1/2 (140)	16,535 (73.6)	21,15 5 (94.1)	18,115 (80.6)	21,155 (94.1)	20,915 (93)	21,155 (94.1)	25,615 (114)	21,155 (94.1)				
1-1/4 (31.8)	5 3/8 (140)	22,485 (100.0)	29,105 (129.4)	24,630 (109.6)	29,105 (129.4)	28,440 (126.5)	29,165 (129.4)	37,360 (166.2)	29,165 (129.4)				

^{1.} The tabulated load values are applicable to single anchors installed in uncracked concrete with no edge or spacing considerations

ALLOWABLE STRESS DESIGN (ASD) PERFORMANCE DATA

Allowable Load Capacities for Power-Stud+ SD1 in Normal-Weight Concrete^{1,2}

		-				-	-				
Nominal	Minimum		Minimum Concrete Compressive Strength - f'c (psi)								
Anchor Diameter	Embedment	2,500		3,000		4,000		6,000		8,0	000
d (in.)	Depth (in.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)	Tension (lbs.)	Shear (lbs.)
1/4	1 3/4	895	370	980	370	1,055	370	1,055	370	1,055	370
3/8	2 3/8	1,165	640	1,275	700	1,470	810	1,805	860	2,080	860
1/2	2 1/2	1,310	915	1,435	1,005	1,655	1,160	2,025	1,420	2,340	1,430
1/2	3 3/4	2,245	1,430	2,460	1,430	2,840	1,430	3,480	1,430	4,020	1,430
5/8	3 3/8	2,225	1,990	2,435	1,990	2,810	1,990	3,445	1,990	3,975	1,990
5/8	4 5/8	3,900	1,990	4,270	1,990	4,935	1,990	6,040	1,990	6,780	1,990
3/4	4	2,695	2,210	2,950	2,420	3,405	2,785	4,170	2,785	4,820	2,785
7/8	4 1/2	3,190	3,585	3,495	3,585	4,040	3,585	4,945	3,585	5,710	3,585
1	5 1/2	4,460	4,440	4,885	4,440	5,645	4,440	6,910	4,440	7,980	4,440
1 1/4	6 1/2	6.075	7.210	6.655	7.210	7.685	7.210	9.410	7.210	10.865	7.210

PRODUCT INFORMATION

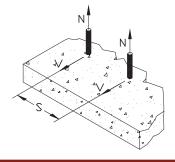
ALLOWABLE STRESS DESIGN (ASD) DESIGN CRITERA

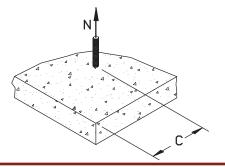
Edge Distance and Spacing Distance Adjustment Factors for Normal-Weight Concrete

Di	a. (in)	1/4	3/8	1/2	1/2	5/8	5/8	3/4	7/8	1	1 1/4
he	ef (in.)	1 3/4	2 3/8	2 1/2	3 3/4	3 3/8	4 5/8	4	4 1/2	5 1/2	6 1/2
sm	in (in.)	2 1/4	3 3/4	7 1/4	5	11	4 1/4	6	6 1/2	8	8
	2 1/4	0.75	-	-	-	-	-	-	-	-	-
	2 1/2	0.78	-	-	-	-	-	-	-	-	-
	3	0.83	-	-	-	-	-	-	-	-	-
	3 1/2	0.89	-	-	-	-	-	-	-	-	-
	4	0.95	0.83	-	-	-	-	-	-	-	-
	4 1/2	1.00	0.88	-	-	-	0.69	-	-	-	
	5	-	0.92	-	0.76	-	0.71	-	-	-	-
	5 1/2	-	0.96	-	0.78	-	0.73	-	-	-	-
hes)	6	-	1.00	-	0.81	-	0.75	0.82	-	-	-
(inc	6 1/2	-	-	-	0.83	-	0.77	0.85	0.81	-	-
)ce	7	-	-	-	0.86	-	0.79	0.87	0.83	-	-
Spacing Distance (inches)	7 1/2	-	-	-	0.89	-	0.81	0.90	0.86	-	-
j	8	-	-	-	0.91	-	0.83	0.93	0.88	0.81	0.75
Ği	8 1/2	-	-	-	0.94	-	0.85	0.95	0.91	0.82	0.76
Sp	9	-	-	-	0.96	-	0.88	0.98	0.93	0.84	0.78
	9 1/2	-	-	-	0.99	-	0.90	-	0.95	0.86	0.80
	10	-	-	-	-	-	0.92	-	0.98	0.88	0.81
	10 1/2	-	-	-	-	-	0.94	-	1.00	0.90	0.83
	11	-	-	-	-	-	0.96	-	-	0.92	0.84
	11 1/2	-	-	-	-	-	0.98	-	-	0.94	0.86
	12	-	-	-	-	-	1.00	-	-	0.96	0.87
	12 1/2	-	-	-	-	-	-	-	-	0.98	0.89
	13	-	-	-	-	-	-	-	-	0.00	0.90

Dia	a. (in)	1/4	3/8	1/2	1/2	5/8	5/8	3/4	7/8	1	1 1/4
						3 3/8		4			
	c (in.)		6 1/2		8	6	10	11	12	12	12
			2 3/4		4	5 1/2	4 3/4	5	7	8	8
	2 3/4	0.79	0.43	-	-	-	-	-	-	-	-
	3	0.86	0.46	-	-	-	-	-	-	-	-
	3 1/2	1.00	0.54	-	-	-	-	-	-	-	-
	4	-	0.62	-	0.52	-	-	-	1	-	-
	4 1/2	-	0.69	-	0.57	-	-	-	-	-	-
	4 3/4	-	0.73	-	0.60	-	0.50	-	-	-	-
	5	-	0.77	-	0.62	-	0.52	0.45	-	-	-
	5 1/4	-	0.81	0.62	0.66	-	0.54	0.48	-	-	-
hes)	5 1/2	-	0.85	0.65	0.69	0.92	0.56	0.50	-	-	-
Edge Distance (inches	6	-	0.92	0.71	0.75	1.00	0.60	0.55	-	-	
Je	6 1/2	-	1.00	0.76	0.81	-	0.65	0.59	-	-	-
istai	7	-	-	0.82	0.88	-	0.70	0.64	0.58	-	-
e Di	7 1/2	-	-	0.88	0.94	-	0.75	0.68	0.62	-	-
Edg	8	-	-	0.94	1.00	-	0.80	0.73	0.67	0.67	0.67
	8 1/2	-	-	1.00	-	-	0.85	0.77	0.71	0.71	0.71
	9	-	-	-	-	-	0.90	0.82	0.75	0.75	0.75
	9 1/2	-	-	-	-	-	0.95	0.86	0.79	0.79	0.79
	10	-	-	-	-	-	1.00	0.91	0.83	0.83	0.83
	10 1/2	-	-	-	-	-	-	0.95	0.88	0.88	0.88
	11	-	-	-	-	-	-	1.00	0.92	0.92	0.92
	11 1/2	-	-	-	-	-	-	-	0.96	0.96	0.96
	12	-	-	-	-	-	-	-	1.00	1.00	1.00

^{1.} Tabulated load values are for anchors installed in concrete. Concrete compresive strength must be at the specified minimum at the time of installation.

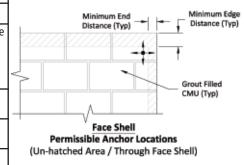

^{2.} Allowable load capacities are multiplied by reduction factors when anchor spacing or edge distances are less than critical distances.



ALLOWABLE STRESS DESIGN (ASD) DESIGN CRITERA

Edge Distance and Spacing Distance Adjustment Factors for Normal-Weight Concrete

Dia	. (in)	1/4	3/8	1/2	1/2	5/8	5/8	3/4	7/8	1	1 1/4
hnor	n (in.)	1 3/4	2 3/8	2 1/2	3 3/4	3 3/8	4 5/8	4	4 1/2	5 1/2	6 1/2
Smir	n (in.)	2 1/4	3 3/4	7 1/4	5	11	4 1/4	6	6 1/2	8	8
	2 1/4	0.64	-	-	-	-	-	-	-	-	-
	2 1/2	0.65	-	-	-	-	-	-	-	-	-
	3	0.68	-	-	-	-	-	-	-	-	-
	3 1/2	0.71	-	-	-	-	-	-	-	-	-
	4	0.74	0.74	-	-	-	-	-	-	-	-
	4 1/2	0.77	0.77	-	-	-	0.66	-	-	-	-
	5	0.80	0.80	-	0.71	-	0.68	-	-	-	-
	5 1/2	0.83	0.83	-	0.73	-	0.69	-	-	-	-
	6	0.86	0.86	-	0.75	-	0.71	0.70	-	-	-
	6 1/2	0.89	0.89	-	0.77	-	0.73	0.72	0.65	-	-
	7	0.92	0.92	-	0.79	-	0.75	0.73	0.67	-	-
	7 1/4	0.94	0.94	0.73	0.80	-	0.75	0.74	0.67	-	-
	7 1/2	0.95	0.95	0.74	0.81	-	0.76	0.75	0.68	-	-
	8	0.98	0.98	0.75	0.83	-	0.78	0.77	0.69	0.67	0.67
	8 1/2	1	1	0.77	0.85	-	0.80	0.78	0.70	0.68	0.68
(SE	9	1	1	0.79	0.88	-	0.82	0.80	0.71	0.69	0.69
Š	9 1/2	-	-	0.80	0.90	-	0.83	0.82	0.73	0.70	0.70
ij	10	-	-	0.82	0.92	-	0.85	0.83	0.74	0.71	0.71
	10 1/2	-	-	0.83	0.94	-	0.87	0.85	0.75	0.72	0.72
tar	11	-	-	0.85	0.96	0.83	0.89	0.87	0.76	0.73	0.73
Spacing Distance (inches)	11 1/2	-	-	0.87	0.98	0.85	0.90	0.88	0.77	0.74	0.74
ng	12	-	-	0.88	1.00	0.86	0.92	0.90	0.79	0.75	0.75
aci	12 1/2	-	-	0.90	-	0.88	0.94	0.92	0.80	0.76	0.76
S	13	-	-	0.91	-	0.89	0.96	0.93	0.81	0.77	0.77
	13 1/2	-	-	0.93	-	0.91	0.97	0.95	0.82	0.78	0.78
	14	-	-	0.94	-	0.92	0.99	0.97	0.83	0.79	0.79
	14 1/2	-	-	0.96	-	0.94	-	0.98	0.85	0.80	0.80
	15	-	-	0.98	-	0.95	-	1.00	0.86	0.81	0.81
	15 1/2	-	-	0.99	-	0.97	-	-	0.87	0.82	0.82
	16	-	-	-	-	0.98	-	-	0.88	0.83	0.83
	16 1/2	-	-	-	-	1.00	-	-	0.89	0.84	0.84
	17	-	-	-	-	-	-	-	0.90	0.85	0.85
	18	-	-	-	-	-	-	-	0.93	0.88	0.88
	19	-	-	-	-	-	-	-	0.95	0.90	0.90
	20	-	-	-	-	-	-	-	0.98	0.92	0.92
	21	-	-	-	-	-	-	-	1.00	0.94	0.94
	22	-	-	-	-	-	-	-	-	0.96	0.96
	23	-	-	-	-	-	-	-	-	0.98	0.98
	24	-	-	-	-	-	-	-	-	1.00	1.00


ALLOWABLE STRESS DESIGN (ASD) PERFORMANCE DATA

Ultimate and Allowable Load Capacities in Tension for Power-Stud+ SD1 in Grout Filled Concrete Masonry Wall Faces 1,2,3,4,5

				Grou	ıt-Filled Coı	ncrete Mas	onry	
Anchor	Minimum Embedment	Min. Edge	Min. End	$f'_{m} = 1$	$f'_{\rm m} = 2$	= 2,000 psi		
Diameter in. (mm)	Depth in. (mm)	Distance in. (mm)	Distance in. (mm)	Ultimate Load Tension Ibs. (kN)	Allowable Load Tension lbs. (kN)	Ultimate Load Tension Ibs. (kN)	Allowable Load Tension lbs. (kN)	
3/8	2 3/8			2,225	445	2,600	520	
(9.5)	(60.3)			(10.0)	(2.0)	(11.6)	(2.3)	
1/2	2 1/2	4	4	2,650	530	3,075	615	
(12.7)	(63.5)	(101.6)	(101.6)	(11.8)	(2.4)	(13.7)	(2.7)	
5/8	3 3/8			3,525	705	4,100	820	
(15.9)	(85.7)			(15.7)	(3.2)	(18.3)	(3.7)	

- 1. Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.
- 2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

PRODUCT INFORMATION

- 3. The tabulated values are applicable for anchors installed in grouted masonry wall faces at a critical spacing distance, s_{cr}, between anchors of 16 times the anchor diameter. The spacing distance between two anchors may be reduced to a minimum distance, s_{min} , of 8 times the anchor diameter provided the allowable tension loads are multiplied by a reduction factor of 0.80 and allowable shear loads are multiplied by a reduction factor of 0.90. Linear interpolation for calculation of allowable loads may be used for intermediate anchor spacing distances.
- 4. Anchors may be installed in the grouted cells and in cell webs and bed joints not closer than 1-3/8" from head joints. The minimum edge and end distances must also be maintained.
- 5. Allowable tension values for anchors installed into bed joints of grouted masonry wall faces with a minimum of 12" edge distance and end distance may be increased by 20 percent for the 1/2-inch diameter and 10 percent for the 5/8-inch diameter.

Ultimate and Allowable Load Capacities in Shear for Power-Stud+ SD1 in Grout Filled Concrete Masonry Wall Faces^{1,2,3,4,5}

					Grout-Filled Concrete Masonry						
Anchor	Minimum	Min.	Min.			,500 psi	$f'_{\rm m} = 2,000 \text{ psi}$				
Diameter in. (mm)	Embedment Depth in. (mm)	Edge Distance in. (mm)	End Distance in. (mm)	Direction of Loading	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)			
3/8 (9.5)	2 3/8 (60.3)	4 (101.6)	4 (101.6)	Perpendicular or parallel to wall edge or end	2,875 (12.8)	575 (2.6)	3,490 (15.6)	665 (3.0)			
		4 (101.6)	12 (304.8)	Perpendicular or parallel to wall edge or end	2,875 (12.8)	565 (2.7)	4,940 (22.1)	655 (2.9)			
1/2 (12.7)			4 (101.6)	Parallel to wall edge	4,050	810	3,435	940			
		4 (101.6)	12 (304.8)	 Parallel to wall end 		(3.6)	(15.3)	(4.2)			
		4 (101.6)	4 (101.6)	Perpendicular or parallel to wall edge or end	3,425 (15.3)	685 (3.1)	4,300 (19.2)	795 (3.5			
5/8 (15.9)		12 (304.8)	4 (101.6)	Parallel to wall edge	5,350	1,070	6,530	1,240			
		4 (101.6)	12 (304.8)	Parallel to wall end		(4.85)	(29.2)	(5.5)			

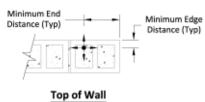
^{1.} Tabulated load values are for anchors installed in minimum 6-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.

^{2.} Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

^{3.} The tabulated values are applicable for anchorinstalled in grouted masonry wall faces at a critical spacing distance, s_{cr} between anchors of 16 times the anchor diameter. The spacing distance between two anchors may be reduced to a minimum distance, s_{min}, of 8' times the anchor diameter provided the allowable tension loads are multiplied by a reduction factor of 0.80 and allowable shear loads are multiplied by a reduction factor of 0.90. Linear interpolation for calculation of allowable loads may be used for intermediate anchor spacing distances.

^{4.} Anchors may be installed in the grouted cells and in cell webs and bed joints not closer than 1-3/8" from head joints. The minimum edge and end distances must also be maintained.

^{5.} Allowable sheer loads for inchors installed into grouted masonry wall faces may be applied in any direction.



ALLOWABLE STRESS DESIGN (ASD) PERFORMANCE DATA

Ultimate and Allowable Load Capacities in Tension for Power-Stud+ SD1 in Grout Filled Concrete Masonry Wall Tops^{1,2,3,4}

				Gro	ut-Filled Co	ncrete Maso	onry	
Anchor	Minimum Embedment	Min. Edge	Min. End	<i>f</i> 'm = 1	,500 psi	f'm = 2,000 psi		
Diameter in. (mm)	Depth in. (mm)	Distance in. (mm)	Distance in. (mm)	Ultimate Load Tension Ibs. (kN)	Allowable Load Tension Ibs. (kN)	Ultimate Load Tension Ibs. (kN)	Allowable Load Tension lbs. (kN)	
3/8 (9.5)	2 3/8 (60.3)	1 3/4 (44.5)		1,500 (6.7)	300 (1.3)	1,725 (7.7)	345 (1.5)	
1/2	2 1/2 (63.5)		12	2,225 (9.9)	445 (2.0)	2,575 (11.5)	515 (2.3)	
(12.7)	5 (127)	2 /14 (57.1)	(304.8)	3,400 (15.1)	680 (3.0)	3,925 (17.5)	785 (3.5)	
5/8 (15.9)	3 3/8 (85.7)			3,825 (17.1)	765 (3.4)	4,425 (19.7)	885 (3.9)	

- 1. Tabulated load values are for anchors installed in minimum 8-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.
- 2. Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.
- 3. Anchors must be installed in the grouted cells and the minimum edge and end distances must be maintained.
- 4. The tabulated values are applicable for anchors installed in top of grouted masonry walls at a critical spacing distance, s_m between anchors of 16 times the anchor diameter.

Ultimate and Allowable Load Capacities in Shear for Power-Stud+ SD1 in Grout Filled Concrete Masonry Wall Tops^{1,2,3,4}

					G	rout-Filled Co	ncrete Mason	ry	
Anchor	_Minimum	Min.	Min.		<i>f</i> 'm = 1	,500 psi	f'm = 2,000 psi		
Diameter in. (mm)	Embedment Depth in. (mm)	Edge Distance in. (mm)	End Distance in. (mm)	Direction of Loading	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)	Ultimate Load Shear Ibs. (kN)	Allowable Load Shear Ibs. (kN)	
3/8	2 3/8	1 3/4	12	Perpendicular to wall toward minimum edge	1,075 (4.8)	215 (1.0)	1,250 (5.6)	250 (1.3)	
(9.5)	(60.3)	(44.5)	(304.8)	Parallel to wall edge	2,300 (10.3)	460 (2.0)	2,650 (11.8)	530 (2.4)	
	2 1/2 (63.5)			Any	1,075 (4.8)	215 (1.0)	1,250 (5.6)	250 (1.3)	
1/2 (12.7)	5	2 1/4 (57.1)	12 (304.8)	Perpendicular to wall toward minimum edge	1,400 (6.2)	280 (1.2)	1,625 (7.2)	325 (1.4)	
	(127)		Parallel to wall edge		2,800 12.5	560 (2.5)	3,250 (14.5)	650 (2.9)	
	3 3/8 (85.7)			Any	1,075 (4.8)	215 (1.0)	1,250 (5.6)	250 (1.3)	
5/8 (15.9)	6 1/4	2 1/4 (57.1)	12 (304.8)	Perpendicular to wall toward minimum edge	2,350 (10.5)	470 (2.1)	2,725 (12.1)	545 (2.4)	
	(158.8)			Parallel to wall edge	3,500 (15.6)	700 (3.1)	4,075 (18.2)	815 (3.6)	

^{1.} Tabulated load values are for anchors installed in minimum 8-inch wide, minimum Grade N, Type II, lightweight, medium-weight or normal-weight concrete masonry units conforming to ASTM C 90. Mortar must be minimum Type N. Masonry compressive strength must be at the specified minimum at the time of installation.

3. Anchors must be installed in the grouted cells and the minimum edge and end distances must be maintained.

^{2.} Allowable load capacities listed are calculated using and applied safety factor of 5.0. Consideration of safety factors of 10 or higher may be necessary depending upon the application such as life safety.

^{4.} The tabulated values are applicable for anchors installed in top of grouted masonry walls at a critical spacing distance, s_m between anchors of 16 times the anchor diameter.

STRENGTH DESIGN INFORMATION

Tension Design Information for Power-Stud+ SD1 Anchor in Concrete (For use with load combinations taken from ACI 318, Section 9.2)1,2,3

PRODUCT INFORMATION

Position Properties				Nominal Anchor Diameter									
Action category	Design Characteristic	Notation	Units	1/4	3/8			5	/R	3/4	7/8	1	1-1/4
Naminal embedment depthy	Anchor category	1 2 or 3	_										1
Minimum specified yield strength \$I_y				<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u> </u>	6-1/2
Minimum specified yield strength	Tronmar embedment depart	Hom		<u> </u>				3 3/3	. 575	<u> </u>		3 1/2	0 1/2
Minimum specified ultimate tensile fut all ksi 110 110 100 160 160 160 175			ksi	i				8	:n	58	58	58	58
## Steel strength (neck)	Minimum specified yield strength	t _y											(400)
Fire circle retails stress area (neck) Age (nm²) (14.2) (34.3) (63.3) (63.7) (10.4) (10.9) (10.9) (20.7)		f _{uta} 11											75 (517)
No No No No No No No No	Effective tensile stress area (neck)	A _{se}											0.762 (484)
Fife-tive embedment Part	Steel strength in tension	N _{sa} 11				. , .							56,202 (250)
Effective embedment hef	Reduction factor for steel strength ³	φ	-					0.	75		•		
#ef (mm) (38) (51) (51) (83) (70) (102) (79) (89) (111) (12 Effectiveness factor for uncracked concrete k_uncr - 24 24 24 24 24 24 24				CONCRET	E BREAKOU	T STRENGTH	IN TENSION	8					
Effectiveness factor for cracked concrete k_{CT} - $k_{DP} 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$	Effective embedment	h _{ef}											5.375 (137)
Modification factor for cracked and uncracked concrete breakout strength in a concrete (2,500 psi)6 $^{\circ}$	Effectiveness factor for uncracked concrete	k _{uncr}	-	24	24	2	4	2	4	24	24	24	24
Critical edge distance C _a c in. (mm) 4 (102) 6-1/2 (165) 8-1/2 (216) 8 (203) 11 (280) 12 (280) 12 (280) 13 (Effectiveness factor for cracked concrete	k _{cr}	-	Not Applicable	17	17 17		24	17	24	24		
Care Circle edge distance Care Circle		c, N ¹¹	-									1 See note 5	
Strength3 PULLOUT STRENGTH IN TENSION FOR \$\frac{1}{2,865}\$ \frac{3}{3,220}\$ \frac{2}{1,4.30}\$ \frac{2}{3,520}\$ \frac{2}{1,1.2}\$ \frac{2}{3} \frac{2}{3} \frac{1}{3} \frac{2}{3} \frac{2}	Critical edge distance	c _{ac}											15 (381)
Characteristic pullout strength, cracked concrete (2,500 psi) ⁶ Np,uncr lb (kN) See note 7 2,865 (12.8) 3,220 (14.3) 5,530 (24.6) See note 7 See	Reduction factor for concrete breakout strength ³	φ	-					0.65 (Co	ndition B)				
Characteristic pullout strength, seismic (2,500 psi)6 $\frac{N_{p,cr}}{(kN)}$ $\frac{lb}{Applicable}$ $\frac{N_{ot}}{Applicable}$ $\frac{2,035}{(9.1)}$ $\frac{1}{See note}$ $\frac{2,505}{(11.2)}$ $\frac{1}{See note}$ $$			PULLO	UT STRENGT	H IN TENSIC	N (NON-SEI	SMIC APPLI	CATIONS) ⁸				_	
Reduction factor for pullout strength PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS8 Characteristic pullout strength, seismic (2,500 psi)6.9 Reduction factor for pullout strength PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS8 Reduction factor for pullout strength, seismic (2,500 psi)6.9 Reduction factor for pullout strength PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS8 Reduction factor for pullout strength PULLOUT STRENGTH IN TENSION FOR STRUCTURAL SAND-LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE OVER STEEL DECK Characteristic pullout strength, uncracked concrete over steel deck, according to Installation Detail 6.10 Np,deck,urcr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6.10 Np,deck,cr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6.10 Np,deck,cr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6.10 Np,deck,cr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6.10 Np,deck,cr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6.10 Np,deck,cr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6.10 Np,deck,cr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6.10 Np,deck,cr Ib Not Installation Detail 6.		N _{p,uncr}		See note 7				See note 7	See note 7	See note 7	See note 7	See note 7	See note 7
PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS ⁸ Characteristic pullout strength, seismic (2,500 psi) ^{6,9} Reduction factor for pullout strength ³ φ - PULLOUT STRENGTH IN TENSION FOR SEISMIC APPLICATIONS ⁸ See note 7 2,505 (26.5) See note 7 5,965 (26.5) See note 7 6,965 (26.5)		N _{p,cr}		Not Applicable		See note 7		See note 7		See note 7	See note 7	See note 7	See note 7
Characteristic pullout strength, seismic (2,500 psi) ^{6,9} Reduction factor for pullout strength ³ ϕ - PULLOUT STRENGTH IN TENSION FOR STRUCTURAL SAND-LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE OVER STEEL DECK Characteristic pullout strength, uncracked concrete over steel deck, according to Installation Detail 6,10 Characteristic pullout strength, cracked concrete over steel deck, according to Installation Detail 6,10 $N_{p,deck,cr}$ $N_$	Reduction factor for pullout strength ³	φ	-	0.65 (Condition B)									
(2,500 psi)6,9 Neq¹ (kN) Applicable (9.1) See note / (11.1) See note / (19.8) (26.5) See note / Se			PUL	LOUT STREN	IGTH IN TEN	SION FOR SE	ISMIC APPL	ICATIONS ⁸					
PULLOUT STRENGTH IN TENSION FOR STRUCTURAL SAND-LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE OVER STEEL DECK Characteristic pullout strength, uncracked concrete over steel deck, according to Installation Detail 6,10 Characteristic pullout strength, cracked concrete over steel deck, according to Installation Detail 6,10 Np,deck,uncr Ib Not Applicable Np,deck,uncr Ib Not Applicable Not Applicable Not Applicable Not Applicable Not Installation Detail 6,10 Characteristic pullout strength, cracked concrete over steel deck, according to Installation Detail 6,10 Np,deck,cr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6,10 Np,deck,cr Ib Not Applicable Np,deck,cr Ib Not Installation Detail 6,10 Not Applicable Np,deck,cr Not Installation Detail 6,10		N _{eq} 11				See note 7		See note 7			See note 7	See note 7	See note 7
PULLOUT STRENGTH IN TENSION FOR STRUCTURAL SAND-LIGHTWEIGHT AND NORMAL-WEIGHT CONCRETE OVER STEEL DECK Characteristic pullout strength, uncracked concrete over steel deck, according to Installation Detail 6.10 Np,deck,uncr Ib Not (kN) Applicable 1,940 (8.6) (14.2) (12.4) (12.4) (14.4) Applicable	Reduction factor for pullout strength ³	φ - 0.65 (Condition B)											
concrete over steel deck, according to Installation Detail 6,10 (kN) Applicable (Robin Detail 6,10 (14.4) Applicable (Robin Detail 6,10 (14.4) Applicable Of the Applicable Applicable Applicable Applicable Of the Office Office Of the Office Of	PULLOUT STI	RENGTH IN TE	NSION FOR	STRUCTUR/	AL SAND-LIG	HTWEIGHT A	AND NORMA	AL-WEIGHT (CONCRETE C	VER STEEL I	DECK		
concrete over steel deck, according to Installation Detail 6,10 (NN) Applicable (6.1) (10.6) (8.8) (14.4) Applicable Appl	Characteristic pullout strength, uncracked concrete over steel deck, according to Installation Detail ^{6,10}	N _{p,deck,uncr}		Not Applicable		3,205 2,795			Not Applicable	Not Applicable	Not Applicable		
Reduction factor for pullout strength ³ ϕ - 0.65 (Condition B)	Characteristic pullout strength, cracked concrete over steel deck, according to Installation Detail 6,10	N _{p,deck,cr}		Not Applicable							Not Applicable	Not Applicable	Not Applicable
·····································	Reduction factor for pullout strength ³	φ	-					0.65 (Co	ndition B)				

- 1. The data in this table is intended to be used with the design provisions of ACI 318 Appendix D; for anchors resisting seismic load combinations the additional requirements of ACI 318 D.3.3 must apply.
- 2. Installation must comply with published instructions and details.
- 3. All values of ϕ apply to the load combinations of IBC Section 1605.2.1, UBC Section 1612.2.1, or ACI 318 Section 9.2. If the load combinations of UBC Section 1902.2 or ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.5. For reinforcement that complies with ACI 318 Appendix D requirements for Condition A, the appropriate ϕ factor must be determined in accordance with ACI 318 D.4.4.
- 4. The Power-Stud+ SD1 is considered a ductile steel element as defined by ACI 318 D.1. Tabulated values for steel strength in tension must be used for design.
- 5. For all design cases use $\psi_{c,N} = 1.0$. The appropriate effectiveness factor for cracked concrete (k_{cf}) or uncracked concrete (k_{uncf}) must be used.
- For all design cases use Ψ_{CP} = 1.0. For concrete compressive strength greater than 2,500 psi, N_{pn} = (pullout strength value from table)*(specified concrete compressive strength/2500)^{0.5}. For concrete over steel deck the value of 2500 must be replaced with the value of 3000.
- 7. Pullout strength will not control design of indicated anchors. Do not calculate pullout strength for indicated anchor size and embedment.
- 8. Anchors are permitted to be used in structural sand-lightweight concrete provided that N_{h_1} , N_{eq} and N_{nq} are multiplied by a factor of 0.60.
- 9. Tabulated values for characteristic pullout strength in tension are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.5.
- 10. Values for N_{p. deck} are for structural sand-lightweight concrete (f'_{c,min} = 3,000 psi) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318 D.5.2 is not required for anchors installed in the deck soffit (flute).
- 11. For 2003 IBC, f_{uta} replaces f_{ut} ; N_{sa} replaces N_s ; $\Psi_{c,N}$ replaces Ψ_{3} , and N_{eq} replaces $N_{p,seis}$.

STRENGTH DESIGN INFORMATION

Shear Design Information for Power-Stud+ SD1 Anchor in Concrete (For use with load combinations taken from ACI 318, Section 9.2)1,2

			Nominal Anchor Diameter									
Design Characteristic	Notation	Units	1/4	3/8	1/	/2	5/8		3/4	7/8	1	1-1/4
Anchor category	1, 2 or 3	-	1	1	1			1	1	1	1	1
Nominal embedment depth	h _{nom}	in.	1-3/4	2-3/8	2-1/2	3-3/4	3-3/8	4-5/8	4	4-1/2	5-1/2	6-1/2
		-		STEEL STR	ENGTH IN SI	HEAR ⁴	_		_		_	
Minimum specified yield strength (threads)	fy	ksi (N/mm ²)	70 (482)	70 (482)	6 (44			4 11)	58 (400)	58 (400)	58 (400)	58 (400)
Minimum specified ultimate strength (threads)	f _{uta} 10	ksi (N/mm ²)	88 (606)	88 (606)	8 (50			0	75 (517)	75 (517)	75 (517)	75 (517)
Effective tensile stress area (threads)	A _{se}	in ² (mm ²)	0.0318 (20.5)	0.0775 (50)	0.14 (91		0.2 (14		0.3345 (212.4)	0.462 (293.4)	0.606 (384.8)	0.969 (615)
Steel strength in shear ⁵	V _{sa} 10	lb (kN)	915 (4.1)	2,120 (9.4)	3,5 (15		4,9 (21		6,860 (30.5)	8,819 (39.2)	10,935 (48.6)	17,750 (79)
Reduction factor for steel strength ³	φ	-					0.	65	•			•
		CONCRETE BREAKOUT STRENGTH IN SHEAR ⁶										
Load bearing length of anchor (hef or 8do, whichever is less)	e ¹⁰	in. (mm)	1.5 (38)	2 (51)	2 (51)	3.25 (83)	2.75 (70)	4 (102)	3.125 (79)	3.5 (88.9)	4.375 (111)	5.375 (137)
Nominal anchor diameter	d _O	in. (mm)	0.25 (6.4)	0.375 (9.5)	0. (12		0.6 (15		0.75 (19.1)	0.875 (22.2)	1 (25.4)	1.25 (31.8)
Reduction factor for concrete breakout ³	φ	-	0.70 (Condition B)									
			CON	CRETE PRYO	UT STRENGT	H IN SHEAR	6					
Coefficient for pryout strength (1.0 for hef $<$ 2.5 in., 2.0 for hef \ge 2.5 in.)	k _{cp}	-	1	1	1	2	2	2	2	2	2	2
Effective embedment	h _{ef}	in. (mm)	1.5 (38)	2 (51)	2 (51)	3.25 (83)	2.75 (70)	4 (102)	3.125 (79)	3.5 (88.9)	4.375 (111)	5.375 (137)
Reduction factor for pryout strength ³	φ	-					0.70 (Co	ndition B)	•	•	-	•
			STEEL STRE	NGTH IN SH	EAR FOR SEI	SMIC APPLIC	CATIONS					
Steel strength in shear, seismic ⁷	V_{eq}^{10}	lb (kN)	Not Applicable	2,120 (9.4)	3,520 4,900 (15.6) (21.8)		5,695 (25.3)	8,819 (39.2)	9,845 (43.8)	17,750 (79)		
Reduction factor for steel strength in shear for seismic ³	φ	-	0.65									
STEEL S	TRENGTH IN	SHEAR FOR	STRUCTURA	L SAND-LIG	HTWEIGHT A	ND NORMA	L-WEIGHT CO	ONCRETE OV	'ER STEEL DE	CK ⁹		
Steel strength in shear, concrete over steel deck, according to Installation Detail ^{8,9}	V _{sa,deck}	lb (kN)	Not Applicable	2,120 (9.4)	2,2 (10		3,7 (15		5,505 (24.5)	Not Applicable	Not Applicable	Not Applicable
Reduction factor for steel strength in shear for concrete over steel deck ³	φ	-					0.	65				<u> </u>

- 1. The data in this table is intended to be used with the design provisions of ACI 318 Appendix D; for anchors resisting seismic load combinations the additional requirements of ACI 318 D.3.3 must apply.
- 2. Installation must comply with published instructions and details.
- 3. All values of ϕ apply to the load combinations of IBC Section 1605.2.1, UBC Section 1612.2.1, or ACI 318 Section 9.2. If the load combinations of UBC Section 1902.2 or ACI 318 Appendix C are used, the appropriate value of ϕ must be determined in accordance with ACI 318 D.4.5. For reinforcement that complies with ACI 318 Appendix D requirements for Condition A, the appropriate ϕ factor must be determined in accordance with ACI 318 D.4.4.
- 4. The Power-Stud+ SD1 is considered a ductile steel element as defined by ACI 318 D.1.
- 5. Tabulated values for steel strength in shear must be used for design. These tabulated values are lower than calculated results using equation D-20 in ACI 318-05, ACI 318 D.6.1.2 and D-18 in ACI 318-02, D.6.1.2.
- 6. Anchors are permitted to be used in structural sand-lightweight concrete provided that V_b , and V_{cp} and V_{cpg} are multiplied by a factor of 0.60.
- 7. Tabulated values for steel strength in shear are for seismic applications and based on test results in accordance with ACI 355.2, Section 9.6.
- 8. Tabulated values for $V_{\text{Sa, deck}}$ are for structural sand-lightweight concrete ($f'_{\text{C, min}} = 3,000 \text{ psi}$) and additional lightweight concrete reduction factors need not be applied. In addition, evaluation for the concrete breakout capacity in accordance with ACI 318 D.6.2 and the pryout capacity in accordance with Section D.6.3 are not required for anchors installed in the deck soffit (flute).
- 9. Shear loads for anchors installed through steel deck into concrete may be applied in any direction.
- 10. For the 2003 IBC f_{uta} replaces f_{ut} ; V_{sa} replaces V_s ; ℓ_e replaces ℓ , and V_{eq} replaces $V_{sa,seis}$.

Powers USA: (800) 524-3244 or (914) 235-6300

ORDERING INFORMATION

Power-Stud+ SD1 (Carbon Steel Body and Expansion Clip)

PRODUCT INFORMATION

Cat. No.	Anchor Size	Thread Length	Box Qty.	Carton Qty.	Wt./100 (lbs)
7400SD1	1/4" x 1-3/4"	3/4"	100	600	3
7402SD1	1/4" x 2-1/4"	1-1/4"	100	600	4
7404SD1	1/4" x 3-1/4"	2-1/4"	100	600	5
7410SD1	3/8" x 2-1/4"	7/8"	50	300	8
7412SD1	3/8" x 2-3/4"	1-3/8"	50	300	9
7413SD1	3/8" x 3"	1-5/8"	50	300	10
7414SD1	3/8" x 3-1/2"	2-1/8"	50	300	12
7415SD1	3/8" x 3-3/4"	2-3/8"	50	300	13
7416SD1	3/8" x 5"	3-5/8"	50	300	15
7417SD1	3/8" x 7"	5-5/8"	50	200	21
7420SD1	1/2" x 2-3/4"	1"	50	200	19
7422SD1	1/2" x 3-3/4"	2"	50	200	23
7423SD1	1/2" x 4-1/2"	2-3/4"	50	200	27
7424SD1	1/2" x 5-1/2"	3-3/4"	50	150	30
7426SD1	1/2" x 7"	5-1/4"	25	100	38
7427SD1	1/2" x 8-1/2"	6-3/4"	25	100	44
7430SD1	5/8" x 3-1/2"	1-1/2"	25	100	37
7432SD1	5/8" x 4-1/2"	2-1/2"	25	100	43
7433SD1	5/8" x 5"	3"	25	100	47
7434SD1	5/8" x 6"	4"	25	75	53
7436SD1	5/8" x 7"	5"	25	75	60
7438SD1	5/8" x 8-1/2"	6-1/2"	25	50	70
7439SD1	5/8" x 10"	8-1/2"	25	75	87
7440SD1	3/4" x 4-1/4"	2-3/8"	20	60	63
7441SD1	3/4" x 4-3/4"	2-7/8"	20	60	68
7442SD1	3/4" x 5-1/2"	3-5/8"	20	60	76
7444SD1	3/4" x 6-1/4"	3-3/8"	20	60	83
7446SD1	3/4" x 7"	3-3/8"	20	60	91
7448SD1	3/4" x 8-1/2"	3-3/8"	10	40	107
7449SD1	3/4" x 10"	3-3/8"	10	30	123
7451SD1	3/4" x 12"	3-3/8"	10	30	144
7450SD1	7/8" x 6"	2-3/4"	10	20	128
7452SD1	7/8" x 8"	4-3/4"	10	40	161
7454SD1	7/8" x 10"	6-3/4"	10	30	187
7461SD1	1" x 6"	4-1/2"	10	30	168
7463SD1	1" x 9"	4-1/2"	10	30	234
7465SD1	1" x 12"	4-1/2"	5	15	307
7473SD1	1-1/4" x 9"	4-3/4"	5	15	374
7475SD1	1-1/4" x 12"	7-3/4"	5	15	476

Installation Accessories

Cat. No.	Description	Box Qty.
08466	Adjustable torque wrench with 1/2" square drive (25 to 250 ftlbs.)	1
08280	Hand pump / dust blower	1

CC-ES Pending CC-ES Pending

CC-ES Pending CC-ES Pending

Shaded catalog numbers denote sizes which are less than the minimum standard anchor length for strength design. The published size includes the diameter and the overall length of the anchor. All anchors are packaged with nuts and washers.